Multiplicative vs. arbitrary gene action in heterosis.
نویسندگان
چکیده
In this article we investigate multiplicative effects between genes in relation to heterosis. The extensive literature on heterosis due to multiplicative effects between characters is reviewed, as is earlier work on the genetic description of heterosis. A two-locus diallelic model of arbitrary gene action is used to derive linear parameters for two multiplicative models. With multiplicative action between loci, epistatic effects are nonlinear functions of one-locus effects and the mean. With completely multiplicative action, the mean and additive effects form similar restrictions for all the rest of the effects. Extensions to more than two loci are indicated. The linear parameters of various models are then used to describe heterosis, which is taken as the difference between respective averages of a cross (F1) and its two parent populations (P). The difference (F2 - P) is also discussed. Two parts of heterosis are distinguished: part I arising from dominance, and part II due to additive x additive (a x a)-epistasis. Heterosis with multiplicative action between loci implies multiplicative accumulation of heterosis present at individual loci in part I, in addition to multiplicative (a x a)-interaction in part II. Heterosis with completely multiplicative action can only be negative (i.e., the F1 values must be less than the midparent), but the difference (F2 - P) can be positive under certain conditions. Heterosis without dominance can arise from multiplicative as well as any other nonadditive action between loci, as is exemplified by diminishing return interaction. The discussion enlarges the scope in various directions: the genetic significance of multiplicative models is considered.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Genetic Analysis and Heterosis for Viscosity Parameters in Rice (Oryza sativa L.) through North Carolina III Mating Design
This study was conducted to evaluate the gene effects, heritability, heterosis and identification of appropriate breeding methods for improving rice viscosity parameters, during 2014-2016 at Rice Research Institute of Iran. The progeny obtained from the North Carolina III mating design with their parents were planted in a randomized complete block design with three replications. Analysis of var...
متن کاملEstimation of Combining Ability and Gene Action for Agro-Morphological Characters of Rapeseed (Brassica Napus L.) Using Line×Tester Mating Design
Combining ability effects were estimated for different agronomic characters in line × tester crossing program comprising 21 hybrids produced by crossing 7 lines and 3 testers. Parents and hybrids differed significantly for general combining ability (GCA) and specific combining ability (SCA) effects, respectively. The variance due to GCA and SCA showed that gene action was predominantly additive...
متن کاملEstimation of Combining Ability and Gene Action for Agro-Morphological Characters of Rapeseed (Brassica Napus L.) Using Line×Tester Mating Design
Combining ability effects were estimated for different agronomic characters in line × tester crossing program comprising 21 hybrids produced by crossing 7 lines and 3 testers. Parents and hybrids differed significantly for general combining ability (GCA) and specific combining ability (SCA) effects, respectively. The variance due to GCA and SCA showed that gene action was predominantly additive...
متن کاملHierarchical additive effects on heterosis in rice (Oryza sativa L.)
Exploitation of heterosis in crops has contributed greatly to improvement in global food and energy production. In spite of the pervasive importance of heterosis, a complete understanding of its mechanisms has remained elusive. In this study, a small test-crossed rice population was constructed to investigate the formation mechanism of heterosis for 13 traits. The results of the relative mid-pa...
متن کاملتجزیه ژنتیکی صفات مرتبط با عملکرد دانه در برنج
To determine gene action and heritability of grain yield related traits in rice, six rice varieties including Hashemi, Vandana, Kadous, Hassani, Shahpasand and IR36 were crossed in a diallel design in 2010. The parents and seeds of F1 generation (36 genotypes) were grown in a completely randomized block design with three replications at the Research Field of the Rice Research Institute of Iran-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 131 2 شماره
صفحات -
تاریخ انتشار 1992